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1 Graphs - recalling basic definitions

An undirected graph G(N, E) is identified by a set of nodes N and a set of edges E. Each edge (also called
undirected arc) e € E is an unordered pair {7, 5} of distinct nodes i,j € N.

A path is a finite sequence of nodes 41,142, ...,7, with no repetition of nodes and such that two successive
nodes in the sequence are the extreme nodes of an edge in the graph E, ie. {ig,ip11} € E for every
(=1,2,....,p—1.

A directed graph is said to be connected when there exists a path from i to j for every couple of distinct
nodes i, € N

A cycle is a path such that i; = 4, (it is common to add the requirement that the cycle contains at least 3
distinct nodes, so to exclude a cycle of the form i1,1i9,4; in which an edge {4, 7} is passed through back and
forth).

A directed graph G(N, A) is identified by a set of nodes N and a set of arcs A. Each (directed!) arca € A
is an ordered pair (i, j) of distinct nodes i,j € N.

Given a directed graph, we can derive the corresponding undirected graph by ignoring the direction of the arcs
and deleting repetitions of the same arcs. A directed graph is said to be connected when the corresponding
undirected graph is connected.

A path is a finite sequence of nodes iy, 2, ...,4, (with no repetition of nodes) associated with a sequence of
arcs ai, ag, . . ., ap such that it holds either a; = (i¢, i741) (forward arc) or ag = (ir41,47) (backward arc).

A cycle is a path such that ¢; = ). In contrast to the definition of path in undirected graph, for the
directed graph case we allow to have a path made up of only two nodes (in this case, the path is of the form
i (ihj)vj? (]a Z),’L

Remark: path and cycles made up only of forward arcs are called directed.

A tree is a connected undirected graph G(IV, ) with no cycles.
We can formalize some important properties of a tree in a theorem.

Theorem 1:
1. Every tree made up of more than one node has at least one leaf.
2. An undirected graph is a tree if and only if it is connected and possesses |N| — 1 edges.
3. Given any two distinct nodes ¢, j of a tree, there exists a unique path from ¢ to j.

4. Tf we add a single edge to a tree, the resulting graph contains exactly one cycle (if we do not distinguish
between cycles defined over the same set of nodes).

Given an undirected graph G(N, E), we call spanning tree a tree such that G(N, E;) with E; C E.
We can formalize some important properties of a tree in a theorem.

Theorem 2: Let G(N, E) be a connected undirected graph and define the subset F' C E. If the edges in F’
do not form any cycle, then the F' can be extended to a subset F} such that ' C F} C F and G(N, F}) is a
spanning tree.

2 Network Flow Problems

Definition (Network): A network is a directed graph G(N, A) where i) each arc a = (4,j) € A has a
capacity u;; > 0 and is associated with a flow f;; > 0 passing through the arc; ii) sending one unit of flow
over an arc (4,7) entails a cost ¢;; > 0; iii) each node is associated with a number b;R representing the flow
entering or leaving the network in ¢ (in particular, if b; > 0 then the node is a source and if b; < 0 then the
node is a sink.
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A flow is any vector fi;, (i,j) € A. A feasible flow is a flow that additionally satisfies the following
conditions:

o fi— Y fii=bi Vie N (1)

(i,7)€A (JH)eA
0 < fij < uyj V(i,j) € A. (2)

The first condition imposes the conservation of flows in a node: the amount of flow that enters a node
must be equal to the amount of flow that exits from the node. The second condition imposes that the flow
on each arc must be non-negative and must satisfy the capacity limit.

Remark: summing both sides of equalities (1) over all the nodes of the graph, we obtain >,y b; = 0,
meaning that the total flow entering the network must equal the flow exiting. This is a condition of existence
of a feasible vector that we will always assume to be met in all network problems that we will consider.

In an optimization perspective, we want to find a feasible flow that minimizes the objective function
Z(i j)eA Cij fij considering the cost of sending a flow over the network.

Assuming that the directed graph G(INV, A) of the network is such that |N| = n and |A| = m, if we use a
matrix form, the flow conservation constraints (1) can be written as:

Af =0
where f is a flow vector and A is the node-arc incidence matrix {—1,0, 1} defined in the following way:

+1 if ¢ is the start node of arc e
Qje = —1 if 7 is the end node of arc e
0 otherwise

Remark: Every column of the matrix A contains one +1 and one —1, whereas all the other entries are zero.
Additionally, the sum of all the rows of A is equal to the zero vector, thus indicating that the rows of A are
linearly dependent.

A circulation is a (feasible or infeasible) flow vector f such that Af = 0. Since b = 0, it denotes a flow
that "circulates" inside the network and there is no flow entering or exiting the network.
Let C be a cycle and CF, CB be the sets of forward and backward arcs of C, respectively. The flow vector
f¢ defined in the following way:
+1 if (4,5) € OF
f5=2 -1 if(i,j)eCP
0  otherwise

is called stmple circulation associated with the cycle C.
Remark: A simple circulation f¢ is such that Af¢ = 0.

2.1 Uncapacitated Network Flow Problems

In this section, we consider the following network design problem, where we have dropped the capacity
constraints (the design problem is then called uncapacitated):

min cf (3)
Af=b (4)
f=0 (5)

where A is the node-arc incidence matrix of the directed graph G(V, A) representing the network.
Throughout the section, we assume that:
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e the graph G is connected
o > .cnbi =0 (to guarantee the feasibility of the problem)

As we have previously noted, by summing the rows of the matrix A we obtain the zero vector, thus revealing
that the rows of A are linearly dependant. As a consequence, we can express one row of A as a linear
combination of the remaining rows of A according to coefficients that are not all simultaneously null. In
particular, we can delete the last constraint of Af = b (i.e., the flow conservation constraint of node n) and
the set of feasible solutions does not vary. Indeed:

Za;:0:>a;l: Z —ag

iEN i€N\{n}

We can then define the truncated node-arc incidence matriz A, obtained by deleting the last row of A
corresponding to node n, and the truncated vector b, obtained by deleting the last element b,,.

After having introduced the truncated matrix A, we can provide a central definition.

Definition (feasible tree solution)): A flow vector f over a network G(NN, A)i s called a tree solution if
it can be defined in the following way:

1. select aset T'C A: |T| =n — 1 that define a tree when the direction is ignored;
2. set fi; =0 Y(i,5) & T,
3. determine the flow variables f;; V(i,j) € T on the basis of the flow conservation constraints Af = b.

When a tree solution satisfies f;; > 0, it is called a feasible tree solution.

We can prove that, once that a tree is fixed in G(IV, A), the corresponding tree solution is uniquely determined.

Theorem 3: Let T C A be a set of cardinality n — 1 that defines a tree in G(N, A) when the direction is
ignored. Then the linear system Af = b with f;; =0 V(4,j) ¢ T admits a unique solution.

Proof: Let B be the matrix of dimension (n — 1) x (n — 1) obtained from A keeping only the columns
corresponding to arcs in 7' and let f7 be the flow (n-1)-dimensional vector made up of the flow variables
fij + (i,j) € T. In order to show that the system Af = b has a unique solution, we show that B is
non-singular.

As first step, we renumber the nodes so that the number increases on the path from any leaf to the root
node n. Moreover, we assign the etiquette min{i, j} to each arc (i,7) € T. This renumbering has the effect
of rearranging the order of the rows and columns of A, however, without changing the nature of B in terms
of (non)-singularity.

Given the previous renumbering, the i-th column of B corresponds with the i-th arc, which has the form
(i,7) or (j,i) with 5 > 4. Since j > 4, there are no non-zero elements in the rows above the diagonal.
Additionally, since the only non-zero entries in the i-th column are ¢ and j, B is lower triangular and there
are no zero entries in the diagonal. As a consequence, the matrix B has a non-zero determinant and is thus
non-singular, thus completing the proof.

Corollary: If the graph G(N, A) is connected, then the truncated node-arc incidence matrix A has linearly
independent rows.

Proof: Thanks to Theorem 2, we know that if a graph G is connected, then we can identify a subset of arcs
T that define a tree when their direction is neglected. Given such a subset T and defined the corresponding
(n—1) x (n—1) matrix B, we know from the proof of the previous theorem that B is non-singular. Therefore,
the (n — 1) rows of A are linearly independent.

Theorem 4: A flow vector is a tree solution if and only if it is a basic solution.

Proof: Let f be a tree solution. We can note that the columns of A corresponding to the variables f;; with
(i,7) € T are the (linearly independent) columns of B and, by linear programming terminology, B is thus a
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basis matrix. Since we set f;; = 0 for (¢,j) € T, the flow vector f is the basic solution corresponding with
the basis B. This proves that a tree solution is a basic solution.

To prove that a basic solution is a tree solution, we proceed by showing that a flow vector f that is not
a tree solution cannot be a basic solution. As first step, we can note that if Af # b, then f is not a basic
solution by definition. As a consequence, we can focus on the case of f such that Af =b.

Given f: Af = b, define the subset F' of arcs on which a non-zero flow is present (i.e., F = {(i,j) € A :
fij # 0}

If the arcs of F' do not define a cycle, then there exists a subset 7' C F: |T'| = n—1 and such that T" forms
atree. As f;; =0,V(i,5) € T, f is the tree solution associated with T, fact that contradicts our assumption.

Assume instead that the arcs of F' defines a cycle C. Let f© be the simple circulation associated with C.
If we introduce the flow vector f + f©, we have A(f + f€) = b, since Af¢ = 0 by definition of circulation.
Additionally, when f;; = 0 the arc (4, j) does not belong to C' and g = 0. We can then note that all the
constraints that are active in f are also active in f + f¢ and the corresponding system of equations does not
admit a unique solution is f is therefore not a basic solution.
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