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1 Graphs - recalling basic de�nitions

An undirected graph G(N,E) is identi�ed by a set of nodes N and a set of edges E. Each edge (also called

undirected arc) e ∈ E is an unordered pair {i, j} of distinct nodes i, j ∈ N .

A path is a �nite sequence of nodes i1, i2, . . . , ip with no repetition of nodes and such that two successive

nodes in the sequence are the extreme nodes of an edge in the graph E, i.e. {i`, i`+1} ∈ E for every

` = 1, 2, . . . , p− 1.
A directed graph is said to be connected when there exists a path from i to j for every couple of distinct

nodes i, j ∈ N
A cycle is a path such that i1 = ip (it is common to add the requirement that the cycle contains at least 3

distinct nodes, so to exclude a cycle of the form i1, i2, i1 in which an edge {i, j} is passed through back and

forth).

A directed graph G(N,A) is identi�ed by a set of nodes N and a set of arcs A. Each (directed!) arc a ∈ A
is an ordered pair (i, j) of distinct nodes i, j ∈ N .

Given a directed graph, we can derive the corresponding undirected graph by ignoring the direction of the arcs

and deleting repetitions of the same arcs. A directed graph is said to be connected when the corresponding

undirected graph is connected.

A path is a �nite sequence of nodes i1, i2, . . . , ip (with no repetition of nodes) associated with a sequence of

arcs a1, a2, . . . , ap such that it holds either a` = (i`, i`+1) (forward arc) or a` = (i`+1, i`) (backward arc).

A cycle is a path such that i1 = ip. In contrast to the de�nition of path in undirected graph, for the

directed graph case we allow to have a path made up of only two nodes (in this case, the path is of the form

i, (i, j), j, (j, i), i.

Remark: path and cycles made up only of forward arcs are called directed.

A tree is a connected undirected graph G(N,E) with no cycles.

We can formalize some important properties of a tree in a theorem.

Theorem 1:

1. Every tree made up of more than one node has at least one leaf.

2. An undirected graph is a tree if and only if it is connected and possesses |N | − 1 edges.

3. Given any two distinct nodes i, j of a tree, there exists a unique path from i to j.

4. If we add a single edge to a tree, the resulting graph contains exactly one cycle (if we do not distinguish

between cycles de�ned over the same set of nodes).

Given an undirected graph G(N,E), we call spanning tree a tree such that G(N,E1) with E1 ⊆ E.

We can formalize some important properties of a tree in a theorem.

Theorem 2: Let G(N,E) be a connected undirected graph and de�ne the subset F ⊆ E. If the edges in F
do not form any cycle, then the F can be extended to a subset F1 such that F ⊆ F1 ⊆ E and G(N,F1) is a
spanning tree.

2 Network Flow Problems

De�nition (Network): A network is a directed graph G(N,A) where i) each arc a = (i, j) ∈ A has a

capacity uij ≥ 0 and is associated with a �ow fij ≥ 0 passing through the arc; ii) sending one unit of �ow

over an arc (i, j) entails a cost cij ≥ 0; iii) each node is associated with a number biR representing the �ow

entering or leaving the network in i (in particular, if bi > 0 then the node is a source and if bi < 0 then the

node is a sink.
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A �ow is any vector fij , (i, j) ∈ A. A feasible �ow is a �ow that additionally satis�es the following

conditions: ∑
(i,j)∈A

fji −
∑

(j,i)∈A

fij = bi ∀i ∈ N (1)

0 ≤ fij ≤ uij ∀(i, j) ∈ A . (2)

The �rst condition imposes the conservation of �ows in a node: the amount of �ow that enters a node

must be equal to the amount of �ow that exits from the node. The second condition imposes that the �ow

on each arc must be non-negative and must satisfy the capacity limit.

Remark: summing both sides of equalities (1) over all the nodes of the graph, we obtain
∑

i∈N bi = 0,
meaning that the total �ow entering the network must equal the �ow exiting. This is a condition of existence

of a feasible vector that we will always assume to be met in all network problems that we will consider.

In an optimization perspective, we want to �nd a feasible �ow that minimizes the objective function∑
(i,j)∈A cijfij considering the cost of sending a �ow over the network.

Assuming that the directed graph G(N,A) of the network is such that |N | = n and |A| = m, if we use a

matrix form, the �ow conservation constraints (1) can be written as:

Af = b

where f is a �ow vector and A is the node-arc incidence matrix {−1, 0, 1}n×m de�ned in the following way:

aie =


+1
−1
0

if i is the start node of arc e
if i is the end node of arc e
otherwise

Remark: Every column of the matrix A contains one +1 and one −1, whereas all the other entries are zero.
Additionally, the sum of all the rows of A is equal to the zero vector, thus indicating that the rows of A are

linearly dependent.

A circulation is a (feasible or infeasible) �ow vector f such that Af = 0. Since b = 0, it denotes a �ow

that "circulates" inside the network and there is no �ow entering or exiting the network.

Let C be a cycle and CF , CB be the sets of forward and backward arcs of C, respectively. The �ow vector

fC de�ned in the following way:

fC
ij =


+1
−1
0

if (i, j) ∈ CF

if (i, j) ∈ CB

otherwise

is called simple circulation associated with the cycle C.

Remark: A simple circulation fC is such that AfC = 0.

2.1 Uncapacitated Network Flow Problems

In this section, we consider the following network design problem, where we have dropped the capacity

constraints (the design problem is then called uncapacitated):

min c′f (3)

Af = b (4)

f ≥ 0 (5)

where A is the node-arc incidence matrix of the directed graph G(V,A) representing the network.

Throughout the section, we assume that:
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• the graph G is connected

•
∑

i∈N bi = 0 (to guarantee the feasibility of the problem)

As we have previously noted, by summing the rows of the matrix A we obtain the zero vector, thus revealing

that the rows of A are linearly dependant. As a consequence, we can express one row of A as a linear

combination of the remaining rows of A according to coe�cients that are not all simultaneously null. In

particular, we can delete the last constraint of Af = b (i.e., the �ow conservation constraint of node n) and
the set of feasible solutions does not vary. Indeed:∑

i∈N
a′i = 0 =⇒ a′n =

∑
i∈N\{n}

−a′i

We can then de�ne the truncated node-arc incidence matrix Ā, obtained by deleting the last row of A
corresponding to node n, and the truncated vector b̄, obtained by deleting the last element bn.

After having introduced the truncated matrix Ā, we can provide a central de�nition.

De�nition (feasible tree solution)): A �ow vector f over a network G(N,A)i s called a tree solution if

it can be de�ned in the following way:

1. select a set T ⊂ A: |T | = n− 1 that de�ne a tree when the direction is ignored;

2. set fij = 0 ∀(i, j) 6∈ T ;

3. determine the �ow variables fij ∀(i, j) ∈ T on the basis of the �ow conservation constraints Āf = b̄.

When a tree solution satis�es fij ≥ 0, it is called a feasible tree solution.

We can prove that, once that a tree is �xed inG(N,A), the corresponding tree solution is uniquely determined.

Theorem 3: Let T ⊆ A be a set of cardinality n − 1 that de�nes a tree in G(N,A) when the direction is

ignored. Then the linear system Āf = b̄ with fij = 0 ∀(i, j) 6∈ T admits a unique solution.

Proof: Let B be the matrix of dimension (n − 1) × (n − 1) obtained from Ā keeping only the columns

corresponding to arcs in T and let fT be the �ow (n-1)-dimensional vector made up of the �ow variables

fij : (i, j) ∈ T . In order to show that the system Āf = b̄ has a unique solution, we show that B is

non-singular.

As �rst step, we renumber the nodes so that the number increases on the path from any leaf to the root

node n. Moreover, we assign the etiquette min{i, j} to each arc (i, j) ∈ T . This renumbering has the e�ect

of rearranging the order of the rows and columns of Ā, however, without changing the nature of B in terms

of (non)-singularity.

Given the previous renumbering, the i-th column of B corresponds with the i-th arc, which has the form

(i, j) or (j, i) with j > i. Since j > i, there are no non-zero elements in the rows above the diagonal.

Additionally, since the only non-zero entries in the i-th column are i and j, B is lower triangular and there

are no zero entries in the diagonal. As a consequence, the matrix B has a non-zero determinant and is thus

non-singular, thus completing the proof.

Corollary: If the graph G(N,A) is connected, then the truncated node-arc incidence matrix Ā has linearly

independent rows.

Proof: Thanks to Theorem 2, we know that if a graph G is connected, then we can identify a subset of arcs

T that de�ne a tree when their direction is neglected. Given such a subset T and de�ned the corresponding

(n−1)×(n−1) matrix B, we know from the proof of the previous theorem that B is non-singular. Therefore,

the (n− 1) rows of Ā are linearly independent.

Theorem 4: A �ow vector is a tree solution if and only if it is a basic solution.

Proof: Let f be a tree solution. We can note that the columns of Ā corresponding to the variables fij with
(i, j) ∈ T are the (linearly independent) columns of B and, by linear programming terminology, B is thus a
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basis matrix. Since we set fij = 0 for (i, j) 6∈ T , the �ow vector f is the basic solution corresponding with

the basis B. This proves that a tree solution is a basic solution.

To prove that a basic solution is a tree solution, we proceed by showing that a �ow vector f that is not

a tree solution cannot be a basic solution. As �rst step, we can note that if Af 6= b, then f is not a basic

solution by de�nition. As a consequence, we can focus on the case of f such that Af = b.
Given f : Af = b, de�ne the subset F of arcs on which a non-zero �ow is present (i.e., F = {(i, j) ∈ A :

fij 6= 0}.
If the arcs of F do not de�ne a cycle, then there exists a subset T ⊆ F : |T | = n−1 and such that T forms

a tree. As fij = 0, ∀(i, j) 6∈ T , f is the tree solution associated with T , fact that contradicts our assumption.

Assume instead that the arcs of F de�nes a cycle C. Let fC be the simple circulation associated with C.

If we introduce the �ow vector f + fC , we have A(f + fC) = b, since AfC = 0 by de�nition of circulation.

Additionally, when fij = 0 the arc (i, j) does not belong to C and fC
ij = 0. We can then note that all the

constraints that are active in f are also active in f + fC and the corresponding system of equations does not

admit a unique solution is f is therefore not a basic solution.
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