Lecture Notes for the course "Design and Operation of Traffic and Telecommunication Networks"

(Version 0.1, Lectures of January 8th - 15th 2016)

Bachelor of Science in Mathematics Freie Universität Berlin

by

Fabio D'Andreagiovanni Department of Mathematical Optimization, Zuse Institute Berlin (ZIB) d.andreagiovanni@zib.de

1 Graphs - recalling basic definitions

An undirected graph G(N, E) is identified by a set of nodes N and a set of edges E. Each edge (also called *undirected arc*) $e \in E$ is an unordered pair $\{i, j\}$ of distinct nodes $i, j \in N$.

A path is a finite sequence of nodes i_1, i_2, \ldots, i_p with no repetition of nodes and such that two successive nodes in the sequence are the extreme nodes of an edge in the graph E, i.e. $\{i_\ell, i_{\ell+1}\} \in E$ for every $\ell = 1, 2, \ldots, p-1$.

A directed graph is said to be *connected* when there exists a path from i to j for every couple of distinct nodes $i, j \in N$

A cycle is a path such that $i_1 = i_p$ (it is common to add the requirement that the cycle contains at least 3 distinct nodes, so to exclude a cycle of the form i_1, i_2, i_1 in which an edge $\{i, j\}$ is passed through back and forth).

A directed graph G(N, A) is identified by a set of nodes N and a set of arcs A. Each (directed!) arc $a \in A$ is an ordered pair (i, j) of distinct nodes $i, j \in N$.

Given a directed graph, we can derive the corresponding undirected graph by ignoring the direction of the arcs and deleting repetitions of the same arcs. A directed graph is said to be *connected* when the corresponding undirected graph is connected.

A path is a finite sequence of nodes i_1, i_2, \ldots, i_p (with no repetition of nodes) associated with a sequence of arcs a_1, a_2, \ldots, a_p such that it holds either $a_\ell = (i_\ell, i_{\ell+1})$ (forward arc) or $a_\ell = (i_{\ell+1}, i_\ell)$ (backward arc).

A cycle is a path such that $i_1 = i_p$. In contrast to the definition of path in undirected graph, for the directed graph case we allow to have a path made up of only two nodes (in this case, the path is of the form i, (i, j), j, (j, i), i.

Remark: path and cycles made up only of forward arcs are called *directed*.

A *tree* is a connected undirected graph G(N, E) with no cycles.

We can formalize some important properties of a tree in a theorem.

Theorem 1:

- 1. Every tree made up of more than one node has at least one leaf.
- 2. An undirected graph is a tree if and only if it is connected and possesses |N| 1 edges.
- 3. Given any two distinct nodes i, j of a tree, there exists a unique path from i to j.
- 4. If we add a single edge to a tree, the resulting graph contains exactly one cycle (if we do not distinguish between cycles defined over the same set of nodes).

Given an undirected graph G(N, E), we call *spanning tree* a tree such that $G(N, E_1)$ with $E_1 \subseteq E$. We can formalize some important properties of a tree in a theorem.

Theorem 2: Let G(N, E) be a connected undirected graph and define the subset $F \subseteq E$. If the edges in F do not form any cycle, then the F can be extended to a subset F_1 such that $F \subseteq F_1 \subseteq E$ and $G(N, F_1)$ is a spanning tree.

2 Network Flow Problems

Definition (Network): A network is a directed graph G(N, A) where i) each arc $a = (i, j) \in A$ has a capacity $u_{ij} \ge 0$ and is associated with a flow $f_{ij} \ge 0$ passing through the arc; ii) sending one unit of flow over an arc (i, j) entails a cost $c_{ij} \ge 0$; iii) each node is associated with a number $b_i \mathbb{R}$ representing the flow entering or leaving the network in i (in particular, if $b_i > 0$ then the node is a source and if $b_i < 0$ then the node is a sink.

A flow is any vector f_{ij} , $(i, j) \in A$. A feasible flow is a flow that additionally satisfies the following conditions:

$$\sum_{(i,j)\in A} f_{ji} - \sum_{(j,i)\in A} f_{ij} = b_i \qquad \forall i \in N$$
(1)

$$0 \le f_{ij} \le u_{ij} \qquad \qquad \forall (i,j) \in A .$$

The first condition imposes the conservation of flows in a node: the amount of flow that enters a node must be equal to the amount of flow that exits from the node. The second condition imposes that the flow on each arc must be non-negative and must satisfy the capacity limit.

Remark: summing both sides of equalities (1) over all the nodes of the graph, we obtain $\sum_{i \in N} b_i = 0$, meaning that the total flow entering the network must equal the flow exiting. This is a condition of existence of a feasible vector that we will always assume to be met in all network problems that we will consider.

In an optimization perspective, we want to find a feasible flow that minimizes the objective function $\sum_{(i,j)\in A} c_{ij} f_{ij}$ considering the cost of sending a flow over the network.

Assuming that the directed graph G(N, A) of the network is such that |N| = n and |A| = m, if we use a matrix form, the flow conservation constraints (1) can be written as:

$$Af = b$$

where f is a flow vector and A is the node-arc incidence matrix $\{-1, 0, 1\}^{n \times m}$ defined in the following way:

$$a_{ie} = \begin{cases} +1 & \text{if } i \text{ is the start node of arc } e \\ -1 & \text{if } i \text{ is the end node of arc } e \\ 0 & \text{otherwise} \end{cases}$$

Remark: Every column of the matrix A contains one +1 and one -1, whereas all the other entries are zero. Additionally, the sum of all the rows of A is equal to the zero vector, thus indicating that the rows of A are linearly dependent.

A *circulation* is a (feasible or infeasible) flow vector f such that Af = 0. Since b = 0, it denotes a flow that "circulates" inside the network and there is no flow entering or exiting the network.

Let C be a cycle and C^F , C^B be the sets of forward and backward arcs of C, respectively. The flow vector f^C defined in the following way:

$$f_{ij}^C = \begin{cases} +1 & \text{if } (i,j) \in C^F \\ -1 & \text{if } (i,j) \in C^E \\ 0 & \text{otherwise} \end{cases}$$

is called *simple circulation* associated with the cycle C. **Remark:** A simple circulation f^C is such that $Af^C = 0$.

2.1 Uncapacitated Network Flow Problems

In this section, we consider the following network design problem, where we have dropped the capacity constraints (the design problem is then called *uncapacitated*):

$$min \quad c'f \tag{3}$$

$$Af = b \tag{4}$$

$$f \ge 0 \tag{5}$$

where A is the node-arc incidence matrix of the directed graph G(V, A) representing the network. Throughout the section, we assume that:

- the graph G is connected
- $\sum_{i \in N} b_i = 0$ (to guarantee the feasibility of the problem)

As we have previously noted, by summing the rows of the matrix A we obtain the zero vector, thus revealing that the rows of A are linearly dependant. As a consequence, we can express one row of A as a linear combination of the remaining rows of A according to coefficients that are not all simultaneously null. In particular, we can delete the last constraint of Af = b (i.e., the flow conservation constraint of node n) and the set of feasible solutions does not vary. Indeed:

$$\sum_{i\in N}a'_i=0\Longrightarrow a'_n=\sum_{i\in N\backslash\{n\}}-a'_i$$

We can then define the *truncated node-arc incidence matrix* \overline{A} , obtained by deleting the last row of A corresponding to node n, and the truncated vector \overline{b} , obtained by deleting the last element b_n .

After having introduced the truncated matrix \overline{A} , we can provide a central definition.

Definition (feasible tree solution)): A flow vector f over a network G(N, A) is called a tree solution if it can be defined in the following way:

- 1. select a set $T \subset A$: |T| = n 1 that define a tree when the direction is ignored;
- 2. set $f_{ij} = 0 \ \forall (i,j) \notin T;$
- 3. determine the flow variables $f_{ij} \forall (i,j) \in T$ on the basis of the flow conservation constraints $\bar{A}f = \bar{b}$.

When a tree solution satisfies $f_{ij} \ge 0$, it is called a feasible tree solution.

We can prove that, once that a tree is fixed in G(N, A), the corresponding tree solution is uniquely determined. **Theorem 3:** Let $T \subseteq A$ be a set of cardinality n-1 that defines a tree in G(N, A) when the direction is ignored. Then the linear system $\overline{A}f = \overline{b}$ with $f_{ij} = 0 \ \forall (i, j) \notin T$ admits a unique solution.

Proof: Let *B* be the matrix of dimension $(n-1) \times (n-1)$ obtained from \overline{A} keeping only the columns corresponding to arcs in *T* and let f^T be the flow (n-1)-dimensional vector made up of the flow variables $f_{ij}: (i,j) \in T$. In order to show that the system $\overline{A}f = \overline{b}$ has a unique solution, we show that *B* is non-singular.

As first step, we renumber the nodes so that the number increases on the path from any leaf to the root node n. Moreover, we assign the etiquette $\min\{i, j\}$ to each arc $(i, j) \in T$. This renumbering has the effect of rearranging the order of the rows and columns of \overline{A} , however, without changing the nature of B in terms of (non)-singularity.

Given the previous renumbering, the i-th column of B corresponds with the i-th arc, which has the form (i, j) or (j, i) with j > i. Since j > i, there are no non-zero elements in the rows above the diagonal. Additionally, since the only non-zero entries in the i-th column are i and j, B is lower triangular and there are no zero entries in the diagonal. As a consequence, the matrix B has a non-zero determinant and is thus non-singular, thus completing the proof.

Corollary: If the graph G(N, A) is connected, then the truncated node-arc incidence matrix \overline{A} has linearly independent rows.

Proof: Thanks to Theorem 2, we know that if a graph G is connected, then we can identify a subset of arcs T that define a tree when their direction is neglected. Given such a subset T and defined the corresponding $(n-1) \times (n-1)$ matrix B, we know from the proof of the previous theorem that B is non-singular. Therefore, the (n-1) rows of \overline{A} are linearly independent.

Theorem 4: A flow vector is a tree solution if and only if it is a basic solution.

Proof: Let f be a tree solution. We can note that the columns of \overline{A} corresponding to the variables f_{ij} with $(i, j) \in T$ are the (linearly independent) columns of B and, by linear programming terminology, B is thus a

basis matrix. Since we set $f_{ij} = 0$ for $(i, j) \notin T$, the flow vector f is the basic solution corresponding with the basis B. This proves that a tree solution is a basic solution.

To prove that a basic solution is a tree solution, we proceed by showing that a flow vector f that is not a tree solution cannot be a basic solution. As first step, we can note that if $Af \neq b$, then f is not a basic solution by definition. As a consequence, we can focus on the case of f such that Af = b.

Given f: Af = b, define the subset F of arcs on which a non-zero flow is present (i.e., $F = \{(i, j) \in A : f_{ij} \neq 0\}$.

If the arcs of F do not define a cycle, then there exists a subset $T \subseteq F$: |T| = n-1 and such that T forms a tree. As $f_{ij} = 0$, $\forall (i, j) \notin T$, f is the tree solution associated with T, fact that contradicts our assumption.

Assume instead that the arcs of F defines a cycle C. Let f^C be the simple circulation associated with C. If we introduce the flow vector $f + f^C$, we have $A(f + f^C) = b$, since $Af^C = 0$ by definition of circulation. Additionally, when $f_{ij} = 0$ the arc (i, j) does not belong to C and $f_{ij}^C = 0$. We can then note that all the constraints that are active in f are also active in $f + f^C$ and the corresponding system of equations does not admit a unique solution is f is therefore not a basic solution.